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Abstract
The harmonic oscillator Hamiltonian, when augmented by a non-Hermitian
PT -symmetric part, can be transformed into a Hermitian Hamiltonian.
This is achieved by introducing a metric which, in general, renders other
observables such as the usual momentum or position as non-Hermitian
operators. The metric depends on one real parameter, the full range of which
is investigated. The explicit functional dependence of the metric and each
associated Hamiltonian is given. A specific choice of this parameter determines
a specific combination of position and momentum as being an observable;
this can be in particular either standard position or momentum, but not both
simultaneously. Singularities of the metric are explored and their removability
is investigated. The physical significance of these findings is discussed.

PACS numbers: 03.65.−w, 03.65.Ge, 03.65.Ta

There is continuing interest in the study of non-Hermitian Hamilton operators. Apart from
the obvious situations relating to open systems, interest is focused upon a specific class of
non-Hermitian operators giving rise to a real spectrum [1–3]. (See [4] for a recent survey and
additional references.)

In [1] reality of the spectrum within the context of a consistent quantum mechanical
framework is quite generally linked to the existence of a positive definite metric operator,
giving rise to what is termed quasi-hermiticity, while in [2] it is conjectured from numerical
evidence that for the class of non-Hermitian Hamiltonians studied there, reality of the spectrum
results from symmetry under simultaneous parity and time reversal operations (denoted by
P and T )—so-called PT -symmetry. It has subsequently been strictly proven for particular
PT -symmetry cases that the full spectrum is in fact real [5, 6]. (In [3] the relationship
between quasi-Hermiticity [1] and PT -symmetry [2] is explored and elucidated in the context
of pseudo-Hermiticity.)

One particular paradigm falling into this class is the simple non-Hermitian harmonic
oscillator given by the Hamiltonian

H = ω
(
a†a + 1

2

)
+ αa2 + βa†2 (1)
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which is manifestly non-Hermitian for α �= β, but PT -symmetric (ω, α and β are real
parameters). Here we use the usual boson operators

a =
√

ω

2
x̂ +

i√
2ω

p̂ (2)

and correspondingly for a†, with x̂ and p̂ being the usual (Hermitian) position and momentum
operators, respectively.

An extensive study of the properties of (1) has been undertaken in [7]. While the quoted
paper is rather implicit, it has been followed by more explicit investigations [8–11]. The
emphasis in [8, 10, 11] lies on the non-uniqueness of the metric with respect to which the
non-Hermitian Hamiltonian appears as a quasi-Hermitian operator, i.e. Hermitian with respect
to a non-trivial metric and its associated inner product, namely

�H = H †� (3)

with � being a positive Hermitian operator defining the new scalar product by

〈·|·〉� := 〈·|�·〉
where 〈·|·〉 is the usual scalar product, employing the L2-metric being the identity. Obviously
(3) guarantees that the non-Hermitian H is Hermitian with respect to 〈·|·〉�. Moreover, using
the positive square root of the metric operator �, the non-Hermitian H can be transformed
into a Hermitian operator with respect to the L2-metric by the similarity transformation

hS = SHS−1 (4)

with S2 = �, S being likewise positive Hermitian. The essential point addressed explicitly in
the present note is the non-uniqueness of S and �. In fact, various forms have been given in
[8–11].

In the spirit of a rather general investigation [1] about non-Hermitian Hamiltonians and
their associated metric operators, we present in this note a complete analysis of the whole
range of operators S yielding Hermitian operators hS according to (4) using (1) for H. For
the problem at hand, our major finding is a continuous set of operators S depending on one
real parameter. Our emphasis lies on the physical significance of the specific choice of the
metric in that a particular value of the parameter yields, apart from hS , a further Hermitian
operator (with respect to the L2-metric) being another observable. Such further observable
can be either the position or momentum operator, but in general a combination thereof, such
as for instance the occupation operator.

We recall that the spectrum of H is given by En = (n + 1/2)� with � =
√

ω2 − 4αβ; of
course it must coincide with that of hS .

Guided by specific forms given in [8–11] we make a general ansatz for S, namely

S = exp A, A = εa†a + ηa2 + η∗a†2 (5)

being a positive Hermitian operator as long as ε2 − 4ηη∗ > 0 (the asterisk denoting complex
conjugation); for this to hold ε must be real.

Using the expressions

SaS−1 =
(

cosh θ − ε

θ
sinh θ

)
a − 2

η∗

θ
sinh θa† (6)

Sa†S−1 =
(

cosh θ +
ε

θ
sinh θ

)
a† + 2

η

θ
sinh θa (7)

with θ =
√

ε2 − 4|η|2, we obtain

hS = SHS−1 = U(ε, η)
(
a†a + 1

2

)
+ V (ε, η)a2 + W(ε, η)a†2 (8)
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for some U,V and W being obtainable after some algebra; the three functions depend in fact
also on ω, α, β. Below explicit expressions are given for hS for the whole available range of
the parameter η.

We require hS to be Hermitian, i.e. U must be real and V = W ∗. This leads to
tanh 2θ

θ
= α − β

(α + β)ε − 2ωη
(9)

and η = η∗. The transformation (8) invokes a corresponding inverse transformation for the
position and momentum operators occurring in H [12, 13]. After suitable rescaling, they read

x = S−1x̂S = cosh θx̂ +
i

ω

ε − 2η

θ
sinh θp̂ (10)

p = S−1p̂S = cosh θp̂ − iω
ε + 2η

θ
sinh θx̂. (11)

While x and p are by construction quasi-Hermitian with respect to the metric �, and hence
observables, these expressions clearly show that it is not clear a priori whether x̂ or p̂, or
a suitable combination of those, remains observables when viewed in conjunction with the
original Hamiltonian (1). In fact, such property depends on the particular choice of the metric.
In the following we use instead of η the parameter z = ε/(2η) with z ∈ [−1, 1].

The relation (9) covers the whole range of possible parameter values that determine the
metric. For a given set of parameters prescribing H (that is ω, α and β), we obtain from (9)
a relationship between z and ε. In other words, the only free parameter that determines the
metric is z while ε is determined by

ε = 1

2
√

1 − z2
arctanh

(α − β)
√

1 − z2

α + β − zω
. (12)

Using the substitutions (2), (10), (11) and (12) slightly tedious but straightforward algebra
leads to the Hermitian set of Hamiltonians

hS(z) = 1
2 (µ(z)p̂2 + ν(z)x̂2) (13)

with

µ(z) =
−z(α + β) + ω − (α + β − zω)

√
1 − (1−z2)(α−β)2

(α+β−zω)2

(1 + z)ω

ν(z) = −ω
z(α + β) − ω − (α + β − zω)

√
1 − (1−z2)(α−β)2

(α+β−zω)2

1 − z
.

(14)

The similarity transformation (5) that gives rise to (13) from (8) is obtained in a similar vein:

S(z) =
(

α + β − ωz + (α − β)
√

1 − z2

α + β − ωz − (α − β)
√

1 − z2

) 1

4
√

1−z2
(a†a+ z

2 (a2+a†2))

=
(

α + β − ωz + (α − β)
√

1 − z2

α + β − ωz − (α − β)
√

1 − z2

) 1

8ω

√
1−z2

(p2(1−z)+ω2x2(1+z)−ω)

. (15)

Specific cases have been given in [8–11]:

(i) for z = 0, yielding from (12) ε = 1/4 log(α/β) and thus

� = S2 =
(

α

β

) N̂
2

(16)

and

hS(z=0) = ω − 2
√

αβ

2ω
p̂2 +

ω

2
(ω + 2

√
αβ)x̂2, (17)
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(ii) for z = 1, yielding ε = −(α − β)/(2(ω − α − β)) and thus

� = S2 = exp

(
− α − β

ω − α − β
ωx̂2

)
(18)

and

hS(z=1) = ω − α − β

2ω
p̂2 +

ω�2

2(ω − α − β)
x̂2 (19)

(iii) for z = −1, yielding ε = (α − β)/(2(ω + α + β)) and thus

� = S2 = exp

(
α − β

ω + α + β

p̂2

ω

)
(20)

and

hS(z=−1) = �2

2ω(ω + α + β)
p̂2 +

ω(ω + α + β)

2
x̂2. (21)

We have presented hS , which is the hermitized forms of H, in (13) and their special forms
in (17), (19) and (21) in terms of the traditional momentum and position operators to indicate
that they have all the same spectrum; they are simply rescaled forms of each other. In fact,
while this is obvious by inspection from (17), (19) and (21), the general form (13) obeys as well
identically the relation µν = �2 = ω2 − 4αβ as it should. However, according to (10) and
(11) the metric associated with a particular choice of z does not—using the L2-metric—yield
Hermitian position and momentum operators. It does though yield the Hermitian combination

O = ω2x2(1 + z) + p2(1 − z) (22)

which is—as we conclude from (10) and (11)—identical to the manifestly L2-Hermitian
operator

Ô = ω2x̂2(1 + z) + p̂2(1 − z).

Note that O = Ô is Hermitian with respect to both the L2-metric, being the identity, and the
most general metric �(z) (compare also the final example in [12]). Note further that z = 0
implies O ∼ N̂ = a†a, the number operator. In contrast, z = 1 yields, according to (10) and
(11), a metric for which x is L2-Hermitian but p is not. In fact, S and thus � is now a function
of x̂ only and we read from (10)

x = S−1x̂S = x̂.

Mutatis mutandis z = −1 gives a non-Hermitian x but the Hermitian momentum

p = S−1p̂S = p̂.

These results nicely demonstrate the point made in [1], and recently elaborated in
[14, 15], that the metric can be made unique by choosing, or constructing, further operators
as observables (i.e. operators being quasi-Hermitian with respect to the same metric) to form
an irreducible set comprising the Hamiltonian. The examples discussed in detail specify one
more operator to be chosen, which is (i) the number or (ii) the position or (iii) the momentum
operator.

While the specific choices made for z may be physically appealing as one of each choice
allows at least one of the three operators (N̂, x̂, p̂) to be an observable in conjunction with the
non-Hermitian Hamiltonian (1), any other choice of z ∈ [−1, 1] may be possible in principle.
Such other choice yields, however, another Hermitian combination of the momentum and
position operator as given in (22). Whether such combination has any particular physical
meaning had to be judged by the specific case considered.
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In turn, depending on the choice of parameters for H (while duly observing ω2 � 4αβ),
there may be combinations which do not allow a real solution for ε of (12) even if z is properly
chosen in the interval [−1, 1]. In fact, the obvious requirement that the argument of the
hyperbolic arctanh is not greater than unity—which is equivalent to the square root occurring
in (14) being real—reveals that there is no real solution for z ∈ [z−, z+] with

z± = (α + β)ω ± (α − β)�

ω2 + (α − β)2
. (23)

The numerical example ω = 1, α = 1/2, β = 1/4 yields [0.54 . . . , 0.87 . . .] as the disallowed
region for z. Note that z+ = 1 for ω = α + β. This combination is obviously incompatible
with the choice z = 1, as seen from (18) and (19). In other words, for ω = α + β (α �= β), the
position operator simply cannot be Hermitian. We stress that as hS fails to be Hermitian when
z ∈ [z−, z+], the metric S is ill defined for these values of z as the argument to be exponentiated
in (15) is negative. The metric is singular (infinity) at z = z− and zero at z = z+.

The singularity just described of the metric is spurious, however. It means that it is
removable [11] by making another choice for the metric, yet at the expense of trading in
singularities elsewhere. For the present problem this is achieved by simply making the
replacement z → −z everywhere. This entails in particular that

• in (14) µ(z) is to be replaced by µ(−z), ν(z) by ν(−z) and in (15) S(z) by S(−z)

• the region where the metric is ill defined is now at z ∈ [−z+,−z−]
• x ≡ x̂ for z = −1 with p non-Hermitian
• p ≡ p̂ for z = +1 with x non-Hermitian
• item(ii) leading to (18) and (19) must now read

– (ii) for z = −1
– with the expressions following remaining unchanged

• item(iii) leading to (20) and (21) must now read

– (ii) for z = 1
– with the expressions following remaining unchanged

• (22) now reads O = ω2x2(1 − z) + p2(1 + z) and correspondingly for Ô.

It is worth mentioning that the singularities of the metric persist if the parameters of the
Hamiltonian are chosen such that z+ and z− coincide. Using (23) this happens when � = 0—
ignoring the trivial case α = β—that is at an exceptional point [16–18], where all energies
coalesce. With ω = 2

√
αβ the expression reads for S(z)

S(z) =
(

α + β − 2
√

αβz + (α − β)
√

1 − z2

α + β − 2
√

αβz − (α − β)
√

1 − z2

) 1

8ω

√
1−z2

(p2(1−z)+ω2x2(1+z)−ω)

. (24)

When z → z+ the denominator of (24) vanishes to second order. The metric is singular at the
exceptional point, which in a more general situation would be indicative of a phase transition
[18, 11, 19].

Having completely analysed the Hamiltonian considered there remains the question:
what choice to make to obtain unique physical answers? In this context we stress that, while
the hermitized Hamiltonians have the same spectrum, the corresponding wavefunctions do
depend on z. In fact, the set of Hamiltonians (13) clearly yield the well-known harmonic
oscillator wavefunctions but with distinctly different arguments for the Gaussian and Hermite
polynomials, the respective arguments being given by the combination (ν/µ)1/4x. In other
words, not only is the preferred choice of the additional observable a function of z and thus of
the metric, but so are other variables such as transition matrix elements [20]. We are not aware
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of a convincing argument that could fix the choice of the metric. There remains an ambiguity.
Any further elucidation should come from a genuine physical situation which is described by
a PT -symmetric or other non-Hermitian Hamiltonian which is quasi-Hermitian, with a real
spectrum. If it exists, Nature will tell what metric she prefers under given circumstances.
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Note added in proof. Using arguments based on a perturbative approach it has been suggested [21] that the classical
limit of the hermitized Hamiltonian be independent of the particular choice of the metric. Our non-perturbative results
do not support this suggestion. In fact, the quantities µ(z) and ν(z) in (14) explicitly depend on z and so does the
Hamiltonian in (13). While the oscillator frequency is of course independent of z, the mass term becomes 1/µ(z) and
the classical energy Ecl = A2�2/(2µ(z)) = ν(z)A2/2 (A = amplitude of the classical oscillation). The (spurious)
singularities at z± given in (23) also appear in the mass term; the mass and classical energy remain finite at z± but
they are complex for z ∈ [z−, z+]. We note that the metric operator has an essential singularity in the classical limit
(h̄ → 0), that is, it cannot be expanded in powers of h̄.
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